
XA Interface Integration Guide
for CICS, Encina, and TUXEDO

Adaptive Server Enterprise
Version 12

Document ID: 36123-01-1200-01

Last revised: October 1999

Copyright © 1989-1999 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Server, Enterprise Application Studio, Enterprise
Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, NetImpact, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit,
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare
Desktop, PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver,
Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-
Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial
Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream,
Transact-SQL, Translation Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 9/99

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

iii

About This Book .. v

CHAPTER 1 Introduction ... 1
Requirements... 3

CHAPTER 2 The Sybase XA Environment ... 5
Definitions .. 6
Overview of the X/Open DTP MODEL ... 8

Components of the Model ... 8
How the Components Communicate... 9
How the Components Interact ... 10
Recovery ... 13

The Sybase XA Environment ... 14
Components of the Sybase XA Environment 14

Connections in the Sybase XA Environment.................................. 16
Identifying Connections Via LRMs .. 16
Establishing Connections .. 17
Distributing Work Across LRMs... 19

CHAPTER 3 Configuring the XA Environment .. 21
Configuring Adaptive Server .. 22
Open String Parameters for DTM XA Interface.............................. 23

Open String Parameters.. 23
dtm_tm_role Required for username....................................... 23
-C Option Not Supported in Open String................................. 24
Logfile and Trace Flag Parameters ... 24
New xa_open() Function Behavior .. 25

XA Configuration File for DTM XA Interface................................... 26
Environment Variable for Specifying Configuration File 26
[all] Section for Defining Common LRM Parameters............... 26
Editing the XA Configuration File .. 28
Additional Capabilities, Properties, and Options 29

Using the DTM XA Interface with CICS.. 32

Contents

iv

Building the Switch-Load File .. 32
Adding a Sybase Stanza to the CICS Region XAD Definition. 35

Using the DTM XA Interface with Encina 37
Assigning an Open String with monadmin create rm 37
Initializing LRMs with mon_RegisterRmi 37
Linking Applications with DTM XA interface libraries 38
Establishing Connections .. 38

Using the DTM XA Interface with TUXEDO 40
Linking ... 41
Setting Up the UBBCONFIG File .. 42
Creating the TUXEDO Configuration File................................ 44
Building the TMS... 45

Build COBOL Runtime Environment (COBOL users only)............. 46

CHAPTER 4 Application Programming Guidelines ... 47
X/Open DTP Versus Traditional Sybase Transaction Processing . 48
Transaction and Connection Management 49

Transaction Management.. 49
Connection Management .. 50
The Current Connection .. 51

Deallocate Cursor Function with Client Library 52
Dynamic SQL ... 53
Getting a Client-Library Connection Handle................................... 54
Multiple-Thread Environment Issues.. 58

Caveats of Thread Use ... 58
Embedded SQL Thread-Safe Code .. 59

Linking with CT Library... 60
Sample Embedded SQL COBOL Fragment 61
Sample Embedded SQL C Fragment .. 64

v

About This Book

Audience This guide serves as a reference manual for:

• System administrators setting up a distributed transaction processing
(DTP) environment that includes one or more Adaptive Servers with
Distributed Transaction Management features, accessed by
transactions from within a CICS, Encina, or TUXEDO TM system.

• Application programmers using Embedded SQL™ or Client-
Library™ to access data on one or more Adaptive Servers.

This manual assumes the reader is familiar with:

• The TM operating environment

• Embedded SQL

• Open Client™ Client-Library

• Adaptive Server administration

How to use this book Use this guide to help configure your environment and code your
application in order to access data stored on one or more Adaptive Servers
from within a CICS, Encina, or TUXEDO TM.

Chapter 1, “Introduction” summarizes the steps necessary to fully
integrate the DTM XA Interface into your environment.

Chapter 2, “The Sybase XA Environment” provides background
information designed to help you place the Sybase XA environment into
the larger context of distributed transaction processing and transaction
management. It reviews the X/Open DTP model of distributed transaction
processing and fits the Sybase DTM XA Interface into this model. In
addition, it describes how the individual components of the Sybase XA
environment work together to allow your application to access Adaptive
Server data from a TM.

Chapter 3, “Configuring the XA Environment” gives instructions for
configuring your environment to fully integrate your application, Sybase
DTM XA Interface, one or more Adaptive Servers, and your TM software.

vi

Chapter 4, “Application Programming Guidelines” explains how to make your
Embedded SQL or Client-Library application conform to certain coding
constraints that the Sybase XA environment imposes.

Related documents The Installation Guide for your platform explains how to install Adaptive
Server and the DTM XA Interface. It also describes how to install licenses for
Adaptive Server features such as Distributed Transaction Management.

To use this manual, you should also be familiar with the information described
in the following manuals:

• Using Adaptive Server Distributed Transaction Management Features

• X/Open CAE Specification (December 1991) Distributed Transaction
Processing: The XA Specification

• Open Client Embedded SQL/COBOL Programmer’s Guide or Open Client
Embedded SQL/C Programmer’s Guide

• Open Client Embedded SQL Reference Manual

• Open Client-Library/C Reference Manual

• Open Client-Library/C Programmer’s Guide

• System Administration Guide

• Your CICS, Encina, or TUXEDO TM documentation set

Other sources of
information

Use the Sybase Technical Library CD and the Technical Library Product
Manuals web site to learn more about your product:

• Technical Library CD contains product manuals and technical documents
and is included with your software. The DynaText browser (included on
the Technical Library CD) allows you to access technical information
about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting Technical Library.

• Technical Library Product Manuals web site is an HTML version of the
Technical Library CD that you can access using a standard web browser.
In addition to product manuals, you’ll find links to the Technical
Documents web site (formerly known as Tech Info Library), the Solved
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals web site, go to Product
Manuals at http://sybooks.sybase.com.

Sybase certifications
on the web

Technical documentation at the Sybase web site is updated frequently.

 About This Book

vii

❖ For the latest information on product certifications and/or the EBF
Rollups:

1 Point your web browser to Technical Documents at
http://techinfo.sybase.com.

2 In the Browse section, click on What’s Hot.

3 Select links to Certification Reports and EBF Rollups, as well as links to
Technical Newsletters, online manuals, and so on.

❖ If you are a registered SupportPlus user:

1 Point your web browser to Technical Documents at
http://techinfo.sybase.com.

2 In the Browse section, click on What’s Hot.

3 Click on EBF Rollups.

You can research EBFs using Technical Documents, and you can
download EBFs using Electronic Software Distribution (ESD).

4 Follow the instructions associated with the SupportPlusSM Online
Services entries.

❖ If you are not a registered SupportPlus user, and you want to become
one:

You can register by following the instructions on the Web.

To use SupportPlus, you need:

1 A Web browser that supports the Secure Sockets Layer (SSL), such as
Netscape Navigator 1.2 or later

2 An active support license

3 A named technical support contact

4 Your user ID and password

❖ Whether or not you are a registered SupportPlus user:

You may use Sybase’s Technical Documents. Certification Reports are among
the features documented at this site.

1 Point your web browser to Technical Documents at
http://techinfo.sybase.com

2 In the Browse section, click on What’s Hot.

3 Click on the topic that interests you.

viii

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

1

C H A P T E R 1 Introduction

The DTM XA Interface is Sybase’s implementation of the XA interface
standard, which is one element of the X/Open Distributed Transaction
Processing (DTP) model. The X/Open DTP model provides an industry
standard for development of distributed transaction processing
applications.

Use the XA Interface to access data stored on Adaptive Server(s) from
within a CICS, Encina, or TUXEDO TM. If you wish to use native
Adaptive Server Distributed Transaction Management (DTM) features
with or without a TM, see Using Adaptive Server Distributed Transaction
Management Features.

To enable a TM transaction to access data stored on Adaptive Server, you
must:

1 Install Adaptive Server, the Distributed Transaction Management
feature, and the DTM XA Interface. Software installation and feature
licenses are described in the Adaptive Server Installation Guide for
your platform.

Note Distributed Transaction Management is a separately-licensed
Adaptive Server feature. You must purchase and install a valid license
for DTM before it can be used.

2 Start Adaptive Server with support for the Distributed Transaction
Management feature. See Using Adaptive Server Distributed
Transaction Management Features for information on how to
configure the DTM feature.

3 Configure the TM software to run with an Embedded SQL or Client-
Library application and Adaptive Server, as described in Chapter 3,
“Configuring the XA Environment”.

4 Make the Embedded SQL or Client-Library application conform to
certain coding constraints, as described in Chapter 4, “Application
Programming Guidelines”.

2

5 Start the CICS, Encina, or TUXEDO TM.

Note To administer global recovery manually in the Sybase XA environment,
you must invoke XA-specific dbcc commands, as described in Using Adaptive
Server Distributed Transaction Management Features.

CHAPTER 1 Introduction

3

Requirements
XA Interface for Adaptive Server version 12 is compatible with:

• Open Client 12.0 or later

• Embedded SQL 12.0 or later

• Adaptive Server 12

• CICS/6000 2.1.1.6

• Encina 2.5/TX Series 4.2

• TUXEDO 6.4 (6.3/6.4 on IBM platforms)

Requirements

4

5

C H A P T E R 2 The Sybase XA Environment

This chapter includes these sections:

• “Definitions” on page 6

• “Overview of the X/Open DTP MODEL” on page 8

• “The Sybase XA Environment” on page 14

• “Connections in the Sybase XA Environment” on page 16

This chapter describes the X/Open DTP model, and shows how the
components of the Sybase XA environment—including the DTM XA
Interface, your application program, and Adaptive Server, among
others—fit into that model. It also discusses how connections are
established and managed in the Sybase XA environment.

Definitions

6

Definitions
The X/Open DTP model assumes an understanding of certain terms. The
following section defines these fundamental concepts:

• transaction – A whole unit of work consisting of one or more
computational tasks. Most often, a transaction’s tasks manipulate shared
resources.

• committed transaction – A completed transaction whose changes to any
shared resources are permanent.

• rolled-back transaction – A complete transaction whose changes to any
shared resources are nullified.

• ACID test – The test of a true transaction; to pass, the transaction must
exhibit the following properties:

• Atomicity – All or none of the results of the transaction take effect.

• Consistency – If a transaction is rolled back, all resources that the
transaction affected return to the state they were in prior to the
transaction’s execution.

• Isolation – A transaction’s results are visible only to that transaction
until the transaction commits.

• Durability – Permanent resource changes resulting from
commitment survive subsequent system failures.

• transaction processing – A system of coordinating the transactions that
multiple users perform on shared, centralized resources.

• distributed transaction processing – A transaction processing model in
which the shared resources are located at distinct physical sites on a
computer network.

• local transaction – A transaction that affects data in a single database and
whose tasks a single resource manager performs. See “Overview of the
X/Open DTP MODEL” on page 8 for a definition of Resource Managers.

• global transaction – A transaction that spans more than one database and
multiple resource managers.

• transaction branch – A portion of the work that makes up a global
transaction.

CHAPTER 2 The Sybase XA Environment

7

• transaction identifier – An identifier that a TM assigns to a transaction.
The transaction monitor uses the transaction identifier to coordinate all
activity related to a global transaction. The resource manager uses the
global identifier to match the recoverable tasks it performed for the
transaction.

• recovery – The process of bringing a transaction processing system into a
consistent state after a failure. Specifically, this means resolving
transactions left in a non-committed state.

Overview of the X/Open DTP MODEL

8

Overview of the X/Open DTP MODEL
The X/Open DTP model is a model for software architecture that allows
multiple application programs to share resources provided by multiple
resource managers, and allows their work to be coordinated into global
transactions.

The X/Open DTP model identifies the key entities in a distributed transaction
processing environment and standardizes their roles and interactions. The
entities are:

• The transaction processing monitor (TM)

• The resource manager (RM)

• The application program (AP)

This section discusses the X/Open DTP functional model, including its major
components and their interfaces. Figure 2-1 shows the X/Open DTP model.

Figure 2-1: A conceptual view of the X/Open DTP model

These components communicate through the native, XA, and TX interfaces as
described in “How the Components Communicate” on page 9.

Components of the Model
The X/Open DTP functional model consists of the following components:

• The Application Program (AP)

RM

Application Program (AP)

TM

Native

XA

TX
Interface Interface

Interface

CHAPTER 2 The Sybase XA Environment

9

• The Resource Manager (RM)

• The Transaction Processing Monitor (TM)

The Application Program (AP)

The AP contains the code written to accomplish a particular transaction or
portion thereof. As such, it designates the beginning and end of global
transactions.

The Resource Manager (RM)

The RM provides access to shared resources. Database servers, file servers,
and print servers are examples of RMs. In a typical X/Open DTP environment,
a single AP communicates with more than one RM.

The Transaction Processing Monitor (TM)

The TM coordinates the communication between all parties participating in the
transaction. The TM assures that the work done by the AP is contained in a
global transaction, which will commit or abort atomically.

Specifically, the TM’s tasks include:

• Assigning global identifiers to transactions

• Monitoring the progress of global transactions

• Coordinating the flow of transaction information between the AP(s) and
the RMs

• Managing the transaction commitment protocol and failure recovery. For
details, see “Step 2: Commitment” on page 10.

How the Components Communicate
The application program, the RM, and the TM communicate via three distinct
interfaces: native, TX, and XA.

Overview of the X/Open DTP MODEL

10

The Native Interface

The native interface is the medium by which the AP makes requests directly to
the RM. In the Sybase XA environment, the native interface is either
Embedded SQL or Client-Library.

The TX Interface

The TX interface is the medium between the AP and the TM. The AP uses TX
calls to delineate transaction boundaries. In other words, the AP requests that
the TM start and commit or roll back global transactions, via the TX interface.

The XA Interface

The XA interface is the medium between the RM and the TM. The DTM XA
Interface is Sybase’s version of the interface for Adaptive Server 12. Using XA
calls, the TM tells the RM when transactions start, commit, and roll back. The
TM also handles recovery.

How the Components Interact
The components work together to process transactions from initiation through
completion.

Step 1: Initiation

The application program delimits transaction boundaries. An AP informs the
TM, via TX calls, that a global transaction is beginning. The TM then
communicates with all available RMs, via XA calls, to associate a single
transaction identifier with any work the RMs will do on behalf of the AP within
the bounds of the global transaction.

Step 2: Commitment

When the AP requests that the TM commit the global transaction, the TM and
the RMs use the two-phase commit protocol to guarantee transaction atomicity.

CHAPTER 2 The Sybase XA Environment

11

The Two-Phase Commit Protocol

Transaction completion takes place in two phases—the prepare phase and the
commit phase. For a detailed description of the two-phase commit protocol, see
the Open Client DB-Library/C Reference Manual.

In the prepare phase, the TM requests each RM to prepare to commit its portion
of the global transaction. This portion is known as a transaction branch.

In the commit phase, the TM instructs the RMs to commit or abort their
branches of the transaction. If all RMs report back that they have prepared their
respective transaction branches, the TM commits the entire transaction. If any
RM reports that it was unprepared or fails to respond, the TM rolls back the
entire transaction.

Figure 2-2 shows a typical transaction branch structure.

Overview of the X/Open DTP MODEL

12

Figure 2-2: Transaction branches

Application Program (AP)

TMRM

Application Program (AP)

TMRM

Application Program (AP)

TMRM

Application Program (AP)

TMRM

CHAPTER 2 The Sybase XA Environment

13

Recovery
The TM is responsible for managing global recovery. In certain situations, an
administrator may decide to complete its transaction branch independently of
the TM. When this occurs, the administrator’s decision is called a heuristic
decision.

The heuristic decision may be in conflict with the TM’s decision. For example,
the administrator may commit a transaction branch and the TM may request to
abort it.

Such a conflict requires manual intervention from the system administrator.
For a discussion of heuristic decisions in the Sybase XA environment, see
Using Adaptive Server Distributed Transaction Management Features.

The Sybase XA Environment

14

The Sybase XA Environment
The DTM XA Interface relies on Sybase’s transaction processing model to
implement X/Open’s DTP model. Adaptive Server is used as an RM, as shown
in Figure 2-3.

Figure 2-3: The Sybase XA DTP model

Components of the Sybase XA Environment
The Sybase XA environment consists of:

Client application

(AP)

Embedded SQL and/or
Open Client

 TM

XA Interface

TX calls

Embedded SQL, and/or
Client-Library calls

XA Calls

Sybase Resource Manager

Adaptive Server LRMs

Connections

CHAPTER 2 The Sybase XA Environment

15

• The Sybase DTM XA Interface. This is Sybase’s implementation of the
XA interface for Adaptive Server 12, described in “How the Components
Communicate” on page 9.

• The Open Client libraries. Client-Library calls can be part of the “native”
interface between your application and the resource manager.

• Embedded SQL/C and Embedded SQL/COBOL. Embedded SQL calls
can be part of the “native” interface between your application and the
resource manager.

• One or more Adaptive Servers. These play the role of Resource Managers.

• The XA configuration file. This file contains entries that define
client/server connections for use with XA.

• A set of XA-specific dbcc commands. System administrators use these to
manage heuristic transactions.

• TM-specific configuration files and commands.

Chapter 3, “Configuring the XA Environment” explains how to configure these
components so that transactions can use the DTM XA Interface to access data
stored on Adaptive Server.

Connections in the Sybase XA Environment

16

Connections in the Sybase XA Environment
The X/Open DTP model has no notion of connections, yet connections are
central to the Sybase client/server architecture. The Sybase XA environment
must resolve this discrepancy.

To this end, the Sybase XA environment introduces the notion of a logical
resource manager (LRM).

Identifying Connections Via LRMs
Each instance of the Sybase RM appears to the TM as one or more LRMs.

An LRM associates a symbolic name with a client-server connection. An AP
uses the names to identify the specific physical connection to one or more
Adaptive Servers. The TM uses the names to open connections on behalf of the
AP.

Where Is the Connection Information Stored?

The following components of the Sybase XA environment contain information
about LRMs. The system administrator configures these files before starting up
the TM. For information on the full configuration process, see Chapter 3,
“Configuring the XA Environment”.

The Sybase XA configuration file

The Sybase XA configuration file contains one entry per LRM. The entry
associates the LRM with a physical Adaptive Server name, and assigns pre-
connection Client-Library capabilities and properties to the LRM. For details
on the XA configuration file, see “XA Configuration File for DTM XA
Interface” on page 26.

The CICS XA product definition (XAD)

The CICS XAD contains one stanza per LRM. The stanza assigns each LRM
a user name and password in the form of an open string. The user name and
password enable the Sybase XA environment to control a particular
connection’s access to Adaptive Server resources. For details on the CICS
XAD file, see “Adding a Sybase Stanza to the CICS Region XAD Definition”
on page 35.

CHAPTER 2 The Sybase XA Environment

17

The Encina monadmin create rm command

The monadmin create rm command assigns each LRM a user name and
password in the form of an open string. The user name and password allow the
Sybase XA environment to control a particular connection’s access to Adaptive
Server resources. For details on the Encina monadmin command, see
“Assigning an Open String with monadmin create rm” on page 37. Your
current version of Encina may have additional commands for specifying RMs.

Note The Encina enconsole interactive command can be used instead of the
shell monadmin command.

For detailed information, see the Encina Monitor System Administrator’s
Guide and Reference.

TUXEDO’s UBBCONFIG file

In addition to modifying the Sybase configuration files, integrating TUXEDO
requires customizing the TUXEDO configuration file, UBBCONFIG. The
open string is the only portion of the UBBCONFIG file that requires
modification. It includes the user name and password, which allow XA-Server
to control a connection’s access to SQL Server resources. See “Setting Up the
UBBCONFIG File” on page 42 for details.

Establishing Connections
The TM, together with the XA Interface, establishes connections between
applications and RMs in several steps.

CICS Steps

For CICS environments:

1 When the CICS region starts up, it issues an XA open call to each LRM
configured in an XAD, using the information contained in each open
string.

2 The CICS region passes to the XA Interface library the open string
associated with each stanza. The open string contains the LRM name, the
user name, and the password.

Connections in the Sybase XA Environment

18

3 The XA Interface looks up the LRM name in the Sybase XA configuration
file and matches it to an actual RM name, that is, an actual physical
Adaptive Server. The RM name matches an entry in the Adaptive Server
interfaces file.

4 The XA Interface establishes one connection to an Adaptive Server for
each LRM entry. The XA Interface confers on any connection the pre-
connection properties and capabilities configured for the LRM.

Encina Steps

For Encina environments:

1 An application issues a mon_RegisterRmi function, thereby requesting
use of an LRM.

2 Using information contained in an open string, the TM issues an XA open
call to the LRM (configured in the monadmin create rm command)
whose name matches that issued in step 1, above.

3 The TM passes the open string associated with each monadmin create rm
command to the XA Interface. The open string contains the LRM name.

4 The XA Interface looks up the LRM name in the Sybase XA configuration
file and matches it to an actual RM name—that is, to an actual physical
Adaptive Server. The RM name matches an entry in the Adaptive Server
interfaces file.

5 The XA Interface establishes one logical connection to an Adaptive Server
for each LRM entry. The XA Interface confers on any connection the pre-
connection properties and capabilities configured for the LRM.

TUXEDO Steps

For TUXEDO environments:

1 The application uses the LRM specified in the UBBCONFIG file to
reference the logical connection for a branch of a global transaction. In
using the LRM name, the application implicitly requests and establishes
an LRM.

2 The transaction manager passes the appropriate open string to the XA
Interface through the LRM whose name matches the one issued in step 1.
The XA Interface uses the LRM name, the user name, and the password.

CHAPTER 2 The Sybase XA Environment

19

3 The XA Interface looks in the xa_config file to find an association
between the LRM name and Adaptive Server. The Adaptive Server name
matches an entry in the interfaces file where its network information is
kept.

Distributing Work Across LRMs
The System Administrator and the application programmer together must
agree on the number and names of LRMs that their Sybase XA environment
includes.

The system administrator configures the TM and Sybase XA configuration
files accordingly. The application programmer invokes a particular LRM name
within the application code to send a portion of a global transaction across that
connection. The TM coordinates this distribution.

The Sybase XA environment may be configured for more connections than are
actually used. That is, the XA configuration file may contain inactive entries.

Figure 2-4 depicts the relationship between the Sybase XA configuration file,
TM configuration file, application code, and Adaptive Server interfaces file for
a CICS environment.

Connections in the Sybase XA Environment

20

Figure 2-4: Relating components of the Sybase XA environment for
CICS

betaOne:
GroupName=””
ActivateOnStartup=yes
ResourceDescription=”XA Product Definition”
AmendCounter=2
Permanent=0
SwitchLoadFile=”/usr/lpp/Sybase/sample/xa_library/
CICS/switch/sybasexa”
XAOpen=”-Uuser=1 -Ppassword_1 -N
-L/tmp/xa_log”
XAClose=”ignored”
XASerialize-all_operations

connection_1

; lrm - Names the logical connection as seen by the application and
; the TP monitor.
;
; server - Names the physical server as found in the Sybase
; interfaces file.
;
; capabilities - Lists pre-connection capabilities to be set (optional).
;
; properties - Lists pre-connection properties to be set (optional).
;
[xa]

lrm=connection_1

server=sybXA_1

[xa]
 lrm=connection_3
 server=SybXA_1
 capabilities= CS_DATA_NOBIT=CS_TRUE
 properties= CS_BULK_LOGIN_CS_FALSE
[xa]
 lrm=connection_3
 server=sybXA_2

queryquery tcp ether groucho 6161
master tcp ether groucho 6161

/* Select a record from the table based on user input. */

sprintf(name, “%s”, panel1.panel1i.newnamei);
EXEC SQL SET CONNECTION
 supplier_address,order_quantity
INTO
:name, :supplier, :supplier_address, :order_quantity
FROM cheese
WHERE name = :name;

XAD File Stanza

XA Configuration File

Interfaces File

Application Program

connection_1

sybXA_1

21

C H A P T E R 3 Configuring the XA Environment

The DTM XA interface provides the same application interface as
Sybase’s earlier XA-Library and XA-Server products. However, you must
link the DTM XA interface library with your X/Open XA-compliant
transaction manager to use Adaptive Server version 12 as a resource
manager.

This chapter describes how to configure the XA environment for use with
CICS, Encina, and TUXEDO TMs. It contains these sections:

• “Configuring Adaptive Server” on page 22

• “Open String Parameters for DTM XA Interface” on page 23

• “XA Configuration File for DTM XA Interface” on page 26

• “Using the DTM XA Interface with Encina” on page 37

• “Using the DTM XA Interface with CICS” on page 32

• “Using the DTM XA Interface with TUXEDO” on page 40

• “Build COBOL Runtime Environment (COBOL users only)” on page
46

Note See also the README file under the subdirectories of
$SYBASE/$SYBASE_OCS/sample for detailed information about
configuring the XA DTM interface for your system.

Configuring Adaptive Server

22

Configuring Adaptive Server
To function in a Sybase XA environment, your Adaptive Server must be
licensed and configured to use the Distributed Transaction Management
feature. See the Installation Guide and Using Adaptive Server Distributed
Transaction Management Features for more information.

If your Adaptive Server is licensed to use Distributed Transaction
Management, you can enable the feature using the enable dtm configuration
parameter:

sp_configure ’enable dtm’, 1

You must reboot Adaptive Server for this parameter to take effect.

CHAPTER 3 Configuring the XA Environment

23

Open String Parameters for DTM XA Interface
The X/Open XA specification allows each resource manager vendor to define
an open string and a close string. (The DTM XA interface does not require or
use the close string.

The DTM XA interface uses the required and optional open string parameters
described below.

Open String Parameters
The format for parameters in the open string for the DTM XA interface is:

-Nlrm_name -Uusername -Ppassword [-Llogfile_name]
 [-Ttraceflags] [-V11]

Table 3-1 describes each component of the open string.

Table 3-1: Sybase X/Open XA Open String Parameters

dtm_tm_role Required for username
In the open string for resource managers, the specified username must have the
dtm_tm_role in the corresponding Adaptive Server. The System Security
Officer can assign this role using sp_role or the grant command. For example:

Parameter Meaning

lrm_name The name of the LRM as defined in the XA configuration file.

username The user name used to log in to Adaptive Server. See
“dtm_tm_role Required for username” on page 23 for more
information.

password The password accompanying the user name.

logfile_name The fully qualified file name to which the XA Interface writes
tracing information (optional).

The XA Interface initializes the log file and trace flag settings
with the initial xa_open() call. If no logfile_name is specified,
then the DTM XA interface logs information to a file named
syb_xa_log in the current directory.

traceflags Trace flags control the output that is written to the logfile
(optional). See “Parameters for [all] section of XA configuration
file” on page 27 for a list of valid trace flags.

-V11 Specifies Open Client version 11 behavior for backward
compatibility (optional).

Open String Parameters for DTM XA Interface

24

sp_role "grant", dtm_tm_role, user_name

-C Option Not Supported in Open String
The -C option, used to specify the maximum number of connections, cannot be
defined in the open string. To set the maximum number of connections for an
LRM, define the CS_MAX_CONNECT property in the [all] section of the XA
configuration file. See “[all] Section for Defining Common LRM Parameters”
on page 26 for more information.

Logfile and Trace Flag Parameters
With the XA DTM interface to Adaptive Server version 12, log file and trace
flag parameters can be defined in the [all] section of the XA configuration file,
rather than in the X/Open XA open string. See “[all] Section for Defining
Common LRM Parameters” on page 26 for more information about the logfile
and trace flag components.

Labels for Logfile Entries

The XA DTM interface marks each entry in the logfile with a label indicating
the severity or cause of the message. Table 3-2 describes each label.

Table 3-2: Logfile message labels

Label Type of Entry

Error An error returned to the transaction manager

Fatal Error A severe failure in the DTM XA interface, with a possible
application or transaction manager error

Message Additional information about a previous error, or a description
of the operational environment

Warning A condition that may indicate problems with the transactional
system

Note Information that does not indicate a problem, but may be
useful if an error occurs

XA trace Information logged as a result of the xa trace flag setting

RM trace Information logged as a result of the xl trace flag setting

Connection trace Information logged as a result of the xc trace flag setting

ASE I/F trace Information logged as a result of the xs trace flag setting

Misc trace Information logged as a result of the misc trace flag setting

CHAPTER 3 Configuring the XA Environment

25

New xa_open() Function Behavior
The X/Open XA function, xa_open(), initiates a single connection to Adaptive
Server, rather than the pair of connections required with earlier XA-Library
and XA-Server products that relied on SYB2PC protocol. Also, the username
and password defined in the open string must possess the dtm_tm_role in the
server, as described under “dtm_tm_role Required for username” on page 23.

Event trace Information logged as a result of the event trace flag setting

Verbose trace Information logged as a result of the v trace flag setting

Function trace Information logged as a result of the cmn trace flag setting

Open Client trace Information logged as a result of the ct trace flag setting

Label Type of Entry

XA Configuration File for DTM XA Interface

26

XA Configuration File for DTM XA Interface
The DTM XA interface to Adaptive Server version 12 introduces several
changes to the contents of the XA configuration file, as compared to previous
XA-Library and XA-Server products.

Environment Variable for Specifying Configuration File
The DTM XA interface uses the environment variable, XACONFIGFILE, to
find the full path and file name of the XA configuration file. You can set this
environment variable to specify different locations and names to use for
configuration information as necessary.

For example, on UNIX platforms:

setenv XACONFIGFILE /usr/u/sybase/xaconfig1.txt

If XACONFIGFILE is not defined, or if it does not specify a valid
configuration file, the DTM XA interface looks for a file named xa_config in
the following directories:

• $SYBASE/$SYBASE_OCS/config

• $SYBASE/$SYBASE_OCS

• $SYBASE/config

• $SYBASE

The DTM XA interface uses the first xa_config file it finds.

[all] Section for Defining Common LRM Parameters
The DTM XA interface uses the [all] section to define certain parameters that
were part of the open string in earlier XA-Library and XA-Server products.
Parameters in the [all] section apply to all LRMs.

Certain parameters defined in the [all] section—logfile and traceflag
definitions—may still be defined in the open string for X/Open XA transaction
managers.

Parameter Definitions for [all] Section

Entries for the [all] section in the XA configuration file are as follows:

CHAPTER 3 Configuring the XA Environment

27

[all]
 logfile=logfile_name

traceflags=[xa | xl | xc | cm| event | misc | os | ct | all]
 [properties=name=value] [...]

Table 3-3 describes each component.

Table 3-3: Parameters for [all] section of XA configuration file

Parameter Meaning

logfile_name The fully qualified file name to which the DTM XA interface writes
tracing information.

The DTM XA interface initializes the logfile and traceflag settings
with the initial xa_open() call.

traceflags The trace flags control the output that is written to the logfile. Specify
one or more of the following flags:

all – all tracing.

ct – the ct_debug option with the CS_DBG_ERROR flag (ct_debug
functionality is available only from within the debug version of
Client-Library).

cmn – entry and exit point tracing of internal XA interface functions.

event – tracing of significant internal events.

misc – tracing of activities and information for problem resolution.

xa – entry and exit point tracing at the xa_* level.

xc – entry and exit point tracing at the xc_* level.

xl – entry and exit point tracing at the xl_* level.

Note Tracing at the xc_*, xl_*, event, misc, and cmn levels is
intended to be meaningful only to Sybase development. Specify these
tracing levels only when instructed to do so by Sybase Technical
Support.

XA Configuration File for DTM XA Interface

28

Editing the XA Configuration File
You must customize the XA configuration file for the application environment.
Use the text editor of your choice to open the XA configuration for editing. The
sample contents of an XA configuration file are as follows:

; Comment line as first line of file REQUIRED!
 ;
 ; xa_config - sample xa_config file.
 ;
 ; Note that the Adaptive Server names may need
 ; to be customized for your environment.

 ; simprpc.ct sample application entry.

 [all]
 logfile=logfile_name
 traceflags=traceflags
 properties=name=value [, name=value] [...]

 [xa]
 lrm=connection1
 server=sqlserver

properties
Note The following property must be set in the [all] stanza. You
cannot set it in the [xa] stanza as with prior XA-Library and XA-
Server releases:

CS_LOGIN_TIMEOUT=timeout

You can define these optional properties in the [all] section of the XA
configuration file:

PROPERTIES=CS_DISABLE_POLL=[CS_TRUE | CS_FALSE]

PROPERTIES=CS_EXTRA_INF=[CS_TRUE | CS_FALSE]

PROPERTIES=CS_HIDDEN_KEYS=[CS_TRUE | CS_FALSE]

PROPERTIES=CS_MAX_CONNECT=number_of_connections

PROPERTIES=CS_NOINTERRUPT=[CS_TRUE | CS_FALSE]

PROPERTIES=CS_TEXTLIMIT=textlimit

PROPERTIES=CS_TIMEOUT=timeout

Parameter Meaning

CHAPTER 3 Configuring the XA Environment

29

 ; Rentapp sample xa_config entries.

 [xa]
 lrm=FLEET_CON
 server=fleetsrv

 [xa]
 lrm=RESERVE_CON
 server=rsrvsrv

Note The first line of the xa_config file MUST be a comment which is denoted
by a semicolon (;) in the first character position.

For each additional LRM, create an entry with the following format. You will
need to keep the connection1 entry for installation verification.

[xa]
 <tab> lrm=connection_name
<tab> server=adaptive_server_name
<tab> capabilities=name=value [, name=value] [...]
 <tab> properties=name=value [, name=value] [...]
 <tab> options=name=value [, name=value] [...]

The connection_name is the symbolic name for the connection between the
application and SQL. The adaptive_server_name is the name of the Adaptive
Server associated with the connection. adaptive_server_name must correspond
to a server name defined in the interfaces file.

See “Additional Capabilities, Properties, and Options” on page 29 for
information a list of capabilities, properties, and options that can be used with
the DTM XA interface.

Additional Capabilities, Properties, and Options
XA configuration file entries for capabilities, properties, and options have the
following general format:

<tab> capabilities=name=value [, name=value] [...]
 <tab> properties=name=value [, name=value] [...]
 <tab> options=name=value [, name=value] [...]

XA Configuration File for DTM XA Interface

30

Table 3-4, Table 3-5, and Table 3-6 list the names for capabilities, properties,
and options that can be defined in the XA configuration file for the DTM XA
interface. Unless otherwise specified in these tables, the valid values for each
capability, property, or option are CS_TRUE or CS_FALSE.

Note All names and values for these capabilities, properties, and options
correspond to CS-Library keywords. See the Open Client Client-Library/C
Reference Manual for specific descriptions.

Table 3-4: XA Interface valid capabilities

Table 3-5: XA Interface valid properties

Capabilities

CS_CON_NOINBAND CS_DATA_NOINT2

CS_CON_NOOOB CS_DATA_NOINT4

CS_DATA_NOBIN CS_DATA_NOINT8

CS_DATA_NOVBIN CS_DATA_NOINTN

CS_DATA_NOLBIN CS_DATA_NOMNY4

CS_DATA_NOBIT CS_DATA_NOMNY8

CS_DATA_NOBOUNDARY CS_DATA_NOMONEYN

CS_DATA_NOCHAR CS_DATA_NONUM

CS_DATA_NOVCHAR CS_DATA_NOSENSITIVITY

CS_DATA_NOLCHAR CS_DATA_NOTEXT

CS_DATA_NODATE4 CS_PROTO_NOBULK

CS_DATA_NODATE8 CS_PROTO_NOTEXT

CS_DATA_NODATETIMEN CS_RES_NOEED

CS_DATA_NODEC CS_RES_NOMSG

CS_DATA_NOFLT4 CS_RES_NOPARAM

CS_DATA_NOFLT8 CS_RES_NOTDSDEBUG

CS_DATA_NOIMAGE CS_RES_NOSTRIPBLANKS

CS_DATA_NOINT1

Properties

CS_ASYNC_NOTIFS CS_SEC_NEGOTIATE

CS_DIAG_TIMEOUT CS_TDS_VERSION=
 [CS_TDS_40 |
 CS_TDS_42 |
 CS_TDS_46 |
 CS_TDS_50]

CS_DISABLE_POLL CS_TEXTLIMIT=textlimit

CHAPTER 3 Configuring the XA Environment

31

Table 3-6: XA Interface valid options

CS_HIDDEN_KEYS CS_EXTRA_INF

CS_PACKETSIZE=packetsize CS_MAX_CONNECT=connections

CS_SEC_APPDEFINED CS_NOINTERRUPT

CS_SEC_CHALLENGE CS_TIMEOUT=timeout

CS_SEC_ENCRYPTION

Options

CS_OPT_ANSINULL CS_OPT_NOEXEC

CS_OPT_ANSIPERM CS_OPT_PARSEONLY

CS_OPT_ARITHABORT CS_OPT_QUOTED_IDENT

CS_OPT_ARITHIGNORE CS_OPT_RESTREES

CS_OPT_DATEFIRST=
 [CS_OPT_SUNDAY |
 CS_OPT_MONDAY |
 CS_OPT_TUESDAY |
 CS_OPT_WEDNESDAY |
 CS_OPT_THURSDAY |
 CS_OPT_FRIDAY |
 CS_OPT_SATURDAY]

CS_OPT_ROWCOUNT=rowcount

CS_OPT_DATEFORMAT=
 [CS_OPT_FMTMDY |
 CS_OPT_FMTDMY |
 CS_OPT_FMTYMD |
 CS_OPT_FMTYDM |
 CS_OPT_FMTMYD |
 CS_OPT_FMTDYM]

CS_OPT_SHOWPLAN

CS_OPT_FIPSFLAG CS_OPT_STATS_IO

CS_OPT_FORCEPLAN CS_OPT_STATS_TIME

CS_OPT_FORMATONLY CS_OPT_STR_RTRUNC

CS_OPT_GETDATA CS_OPT_TEXTSIZE=textsize

CS_OPT_ISOLATION=
 [CS_OPT_LEVEL1 |
 CS_OPT_LEVEL3]

CS_OPT_TRUNCIGNORE

CS_OPT_NOCOUNT

Properties

Using the DTM XA Interface with CICS

32

Using the DTM XA Interface with CICS
This section explains how to setup your CICS environment to use the DTM XA
interface. See also “XA Configuration File for DTM XA Interface” on page 26
for information on creating an XA configuration file.

Building the Switch-Load File
Each RM defined in the CICS environment must provide an XA switch-load
file. The switch-load file is a component of your CICS configuration; it is
referenced in the XAD. It contains the RM’s name, a flag, a version number
and a set of non-null pointers to the RM’s entry points, provided by the DTM
XA interface.

All of the Sybase XADs share a single switch-load file. You can build your
Sybase switch-load file using the file sybasexa.c, which is located in:

$SYBASE/$SYBASE_OCS/sample/xa-dtm/cics/switch

The following is a listing of sybasexa.c:

/*
 **
 ** sybasexa.c
 **
 ** The sybasexa routine references the Sybase xa
 ** switch structure named "sybase_TXS_xa_switch".
 ** The switch structure is part of the
 ** XA product library "libdtmxa.a".
 **
 ** See your CICS documentation for details on the
 ** switch-load file.
 */

 #include <stdio.h>
 #include <tmxa/xa.h>

 extern struct xa_switch_t sybase_TXS_xa_switch;
 extern struct xa_switch_t RegXA_xa_switch;
 extern struct xa_switch_t *cics_xa_switch;

 struct xa_switch_t *sybasexa(void)
 {
 cics_xa_switch = &sybase_TXS_xa_switch;

CHAPTER 3 Configuring the XA Environment

33

 cics_xa_init();

 return(&RegXA_xa_switch);
 }

This source code references the Sybase XA switch structure, which is global
the DTM XA interface and defined as follows:

struct xa_switch_t sybase_TXS_xa_switch =
 {
 “SYBASE_SQL_SERVER”,
 TMNOFLAGS,
 0,
 xa_open,
 xa_close,
 xa_start,
 xa_end,
 xa_rollback,
 xa_prepare,
 xa_commit,
 xa_recover,
 xa_forget,
 xa_complete
 };

The use of TMNOFLAGS specifies that the DTM XA interface supports thread
migration but does not support dynamic registration or asynchronous
operations. For a description of these features, see the X/Open CAE
Specification (December 1991) Distributed Transaction Processing: The XA
Specification.

Compiling the Switch-Load File on IBM RISC System/6000 AIX

Compile sybasexa.c using the makefile sybasexa.mk, which is located in:

$SYBASE/$SYBASE_OCS/sample/xa-dtm/cics/switch

This is a listing of sybasexa.mk. Edit it to reflect your configuration.

SYB_LIBDIR = $(SYBASE)/$(SYBASE_OCS)/lib
 SYBLIBS = -lxadtm -lct_r.so -lcs_r.so -ltcl_r.so -lcomn_r.so -lintl_r
 -lxdsxom

 all : sybasexa.c
 xlc_r4 -bnoquiet -v -D_THREAD_SAFE \
 -I/usr/lpp/encina/include sybasexa.c \
 -o sybasexa \
 -esybasexa \

Using the DTM XA Interface with CICS

34

 -L/usr/lpp/cics/lib \
 -L$(SYB_LIBDIR) \
 $(SYBLIBS) \
 -lcicsrt -ldce -lm \
 /usr/lpp/cics/lib/regxa_swxa.o

Note You must use the shareable versions of CS-Library (libcs_r.so.a) and
Common Library (libcom_r.so.a). To make shareable libraries, use
$SYBASE/$SYBASE_OCS/sample/xa-dtm/cics/mkshlibs.sh.

Compiling the Switch-Load File on HP9000 Series 800 HP-UX

Compile sybasexa.c using the makefile sybasexa.mk.hp800, which is located
in:

$SYBASE/$SYBASE_OCS/sample/xa-dtm/cics/switch

This is a listing of sybasexa.mk. Edit it to reflect your configuration.

#
 # Makefile to compile the LoadSwitchTable
 # This makefile should be run with the command
 # "make -f sybasexa.mk.hp800"
 #

 CC=/opt/ansic/bin/cc
 CCOPTS= -Aa +z -Dsybasexa=CICS_XA_Init
 ENCINA=/opt/encina
 CICS=/opt/cics
 LD=/usr/ccs/bin/ld

 SYB_LIBDIR = $(SYBASE)/$(SYBASE_OCS)/lib
 CICS_LIBDIR = $(CICS)/lib

 all: sybasexa

 sybasexa: sybasexa.o
 $(LD) -b \
 +e CICS_XA_Init \
 -o sybasexa \
 sybasexa.o \
 $(CICS_LIBDIR)/regxa_swxa.o \
 -Bimmediate -Bnonfatal +s +b/opt/cics/lib\
 $(SYB_LIBDIR)/libxadtm.a \
 $(SYB_LIBDIR)/libct_r.a \

CHAPTER 3 Configuring the XA Environment

35

 $(SYB_LIBDIR)/libcs_r.sl \
 $(SYB_LIBDIR)/libtcl_dce.a \
 $(SYB_LIBDIR)/libcomn_dce.sl \
 $(SYB_LIBDIR)/libintl_r.sl \
 -lm \
 $(CICS_LIBDIR)/libcicsrt.sl \
 -lc

 sybasexa.o: sybasexa.c
 $(CC) -c $(CCOPTS)\
 -I$(ENCINA)/include sybasexa.c

Note 1. You must use the shareable versions of CS-Library (libcs_r.so.a) and
Common Library (libcomn_dce.sl).
 2. Building the Load Switch Table requires the ANSI C compiler.

Compiling the Switch-Load File on Sun Solaris 2.x (SPARC)

When compiling the switch-load file, make sure you link to the new DTM XA
interface library, libxadtm.a, rather than the libxa.a file used with the XA-
Library product.

Adding a Sybase Stanza to the CICS Region XAD Definition
The CICS TM uses CICS XAD information to communicate with other RMs.
The XAD definition contains one Sybase stanza for each LRM. For a
description of an XAD stanza’s attributes, see your CICS documentation.

Below are two sample Sybase XAD stanzas. Use the SMIT utility to add stanzas
to your CICS region.

 betaOne:
 GroupName=""
 ActivateOnStartup=yes
 ResourceDescription="XA Product Definition"
 AmendCounter=2
 Permanent=no
 SwitchLoadFile="/usr/lpp/sybase/sample/xa_library/
 cics/switch/sybasexa”
 XAOpen="-Uuser_1 -Ppassword_1 -Nconnection_1"
 XAClose="ignored"
 XASerialize=all_operations

Using the DTM XA Interface with CICS

36

 betaTwo:
 GroupName=""
 ActivateOnStartup=yes
 ResourceDescription="XA Product Definition"
 AmendCounter=2
 Permanent=no
 SwitchLoadFile="/usr/lpp/sybase/sample/xa_library/
 cics/switch/sybasexa"
 XAOpen="-Uuser_2 -Ppassword_2 -Nconnection_2"
 XAClose="ignored"
 XASerialize=all_operations

The following fields are configuration-dependent and must be modified:

• SwitchLoadFile

• XAOpen

• XAClose

• XASerialize

Note All Sybase stanzas can use the same switch-load file.

See “Open String Parameters for DTM XA Interface” on page 23 for
information about the contents specified in the XAOpen string of the XAD
Definition.

CHAPTER 3 Configuring the XA Environment

37

Using the DTM XA Interface with Encina
This section describes how to assign an open string and initialize an RM for use
with the Encina. See also “XA Configuration File for DTM XA Interface” on
page 26 for information on creating an XA configuration file.

Assigning an Open String with monadmin create rm
The monadmin create rm command assigns each LRM a user name and
password in the form of an open string. The user name and password allow the
DTM XA interface to control a particular connection’s access to Adaptive
Server resources. See “Open String Parameters for DTM XA Interface” on
page 23 for more information about the contents of the open string.

The following shows sample screen contents of a monadmin create rm
session:

echo “Creating connection_1 resource manager record”
monadmin delete rm connection_1 >>& demo_conf.log
monadmin create rm connection_1\

-open “-Usa -Psecret -Nconnection_1" \
-close “not used” >>& \
demo_conf.log

if ($status) then
echo “Failed to create lrm_1 resource mgr.”;
exit 1;

endif

Your current version of Encina may have additional commands for specifying
RMs. For detailed information, see the Encina Monitor System Administrator’s
Guide and Reference.

Note The Encina enconsole interactive command can be used instead of the
shell monadmin command.

Initializing LRMs with mon_RegisterRmi
From within your Encina Monitor application server, you must register each
LRM with a call to mon_RegisterRmi. For example:

status = mon_RegisterRmi(&sybase_TXS_xa_switch,
 “connection_1”, &rmiID);

Using the DTM XA Interface with Encina

38

 if (status != MON_SUCCESS)
 {
 fprintf(stderr, “mon_RegisterRmi
 failed (%s).\n”,
 mon_StatusToString(status));
 bde_Exit(1);
 }
 fprintf(stderr, “mon_RegisterRmi
 complete\n”);

For each LRM registered with a monadmin create rm command, there must
be a mon_RegisterRmi command that initializes the LRM. The rmname
specified in the monadmin create rm command must match the rmname in the
mon_RegisterRmi command.

See the Encina Monitor Programmer’s Guide for:

• Information about the tasks performed by the registration function and the
order in which they must be performed

• Full syntax of the mon_RegisterRmi command

Linking Applications with DTM XA interface libraries
Be sure to link applications with the new DTM XA interface library,
libxadtm.a, rather than the libxa.a file used with the XA-Library product.

Establishing Connections
The TM, together with the DTM XA interface library, establishes connections
between applications and RMs in several steps:

1 An application issues a mon_RegisterRmi function, thereby requesting
use of an LRM.

2 Using information contained in an open string, the TM issues an XA open
call to the LRM (configured in the monadmin create rm command)
whose name matches that issued in step 1, above.

3 The TM passes the open string associated with each monadmin create rm
command to the DTM XA interface. The open string contains the LRM
name.

CHAPTER 3 Configuring the XA Environment

39

4 The DTM XA interface looks up the LRM name in the XA configuration
file and matches it to an actual RM name—that is, to an actual physical
Adaptive Server. The RM name matches an entry in the Adaptive Server
interfaces file.

5 The DTM XA interface establishes one logical connection to a Adaptive
Server for each LRM entry. It then confers on any connection the pre-
connection properties and capabilities configured for the LRM.

Using the DTM XA Interface with TUXEDO

40

Using the DTM XA Interface with TUXEDO
The following sections explain the application-specific steps you need to take
to integrate the DTM XA interface with TUXEDO.

Note The DTM XA interface does not implement a separate XA-Server
executable for use with TUXEDO.

The application-specific part of the integration involves:

• Linking the application with the application servers

• Setting up the UBBCONFIG file

• Building a transaction monitor server (TMS)

• Integrating the application servers with the resource managers

It is assumed that TUXEDO is installed in the $TUXDIR directory and that any
resource managers are also installed on the system.

Note In the following procedures, replace the environment variables with the
actual TUXEDO paths as follows: replace $TUXDIR with your actual root
directory path and replace $SYBASE with the path to the DTM XA interface
installation directory.

Table 3-7 provides the Sybase-specific information you need to perform the
TUXEDO integration. The TUXEDO Installation Guide discusses this
information the section “Integrating a Resource Manager With System/T.”

CHAPTER 3 Configuring the XA Environment

41

Table 3-7: Information needed to integrate the TUXEDO System

Note The DTM XA interface has been fully tested with the reentrant libraries,
ct_r, cs_r, comn_r, tcl_dce, and intl_dce. If you are using the non-reentrant
libraries and experience problems, use the reentrant versions of the libraries
instead.

See also “XA Configuration File for DTM XA Interface” on page 26 for
information on creating an XA configuration file.

Linking
The TUXEDO RM file provides information used by TUXEDO utilities to link
TUXEDO servers. Make sure that the RM file contains an appropriate set of
specifications for linking Sybase applications.

1 Use the text editor of your choice to open the $TUXDIR/udataobj/RM file
for editing.

Type of
Information Sybase Specific Description

RM name SYBASE_XA_SERVER The name of the resource
manager in the name element of
the xa_switch_t structure.

XA structure
name

sybase_TUX_xa_switch The name of the xa_switch_t
structure that contains the
resource manager identifier, the
flags for the resource manager’s
capabilities, and the function
pointers of the XA functions.

Library name The library files ct_r, cs_r,
comn_r, tcl_dce, and intl_dce
which are located in
$SYBASE/$SYBASE_OCS/lib

The list of files needed to support
the DTM XA interface, and a full
path name.

Open string
contents

See “Open String Parameters
for DTM XA Interface” on
page 23.

The format of the information
string passed to the functions.

Using the DTM XA Interface with TUXEDO

42

2 Update the file with XA information by adding/verifying entries for
Sybase resource managers. For most Sybase applications, including the
simprpc.ct sample application, one entry for SYBASE_XA_SERVER is
all that you need. If you are going to build and run the rentapp sample, you
may want to go ahead and add the second entry for
SCRAP_XA_SERVER, as required for rentapp.

Replace $SYBASE/$SYBASE_OCS with the fully qualified path to the Sybase
installation directory containing the XA Interface:

SYBASE_XA_SERVER:sybase_TUX_xa_switch:-t -Bstatic
 -L$SYBASE/$SYBASE_OCS/lib -lcobct -lxadtm -lct_r -lcs_r
 -lcomn_r -ltcl_dce -lintl_dce -Bdynamic -ldl
SCRAP_XA_SERVER:sybase_TUX_xa_switch:-t -Bstatic
 -L$SYBASE/$SYBASE_OCS/lib -lcobct -lxadtm -lct_r -lcs_r
 -lcomn_r -ltcl_dce -lintl_dce -Bdynamic -ldl

Note Each entry must be a single continuous line.

The cobct libraries are only needed if you are building ESQL/COBOL
application servers. If you are not using ESQL/COBOL, you can remove the -
lcobct specification.

If you want your TUXEDO servers to load and execute all Sybase libraries
dynamically, you can use entries like the following. Note that dynamic libraries
may increase CPU overhead for TUXEDO server execution.

 SYBASE_XA_SERVER:sybase_TUX_xa_switch:-L$SYBASE/$SYBASE_OCS/lib
 -lxadtm -lct_r -lcobct -lcs_r -lcomn_r -ltcl_dce -lintl_dce
 SCRAP_XA_SERVER:sybase_TUX_xa_switch:-L$SYBASE/$SYBASE_OCS/lib
 -lxadtm -lct_r -lcobct -lcs_r -lcomn_r -ltcl_dce -lintl_dce

Note Each entry must be a single continuous line.

You can add a comment line by identifying it with a leading pound sign (#)
character.

Setting Up the UBBCONFIG File
This section provides specific examples for setting up the TUXEDO
UBBCONFIG file with the XA Interface.

CHAPTER 3 Configuring the XA Environment

43

The pubs2 database must be installed on Adaptive Server. Use the installation
script in the Adaptive Server directory under scripts/installpubs2.

“Open String Parameters for DTM XA Interface” on page 23 explains the open
string in the UBBCONFIG file.

1 Use the ASCII text editor of your choice to open
$SYBASE/$SYBASE_OCS/sample/xa-dtm/tuxedo/
 simprpc.ct/ubbsimpct for editing. The file is shown here with line
numbers to facilitate the discussion:

1 *RESOURCES
 2 IPCKEY 123456
 3
 4 MASTER sybsite
 5 MAXACCESSERS 5
 6 MAXSERVERS 5
 7 MAXSERVICES 10
 8 MODEL SHM
 9
 10 MAXGTT 5
 11
 12 *MACHINES
 13 yourmachine LMID=sybsite
 14 TUXDIR="$TUXDIR"
 15 APPDIR="$SYBASE/$SYBASE_OCS/sample/xa-dtm/tuxedo
 /simprpc.ct"
 16 TLOGDEVICE="$SYBASE/$SYBASE_OCS/sample/xa-dtm/tuxedo
 /simprpc.ct/tuxlog"
 17 TLOGNAME=TLOG
 18 TUXCONFIG="$SYBASE/$SYBASE_OCS/sample/xa-dtm/tuxedo
 /simprpc.ct/tuxconfig"
 19 ULOGPFX="$SYBASE/$SYBASE_OCS/sample/xa-dtm/tuxedo
 /simprpc.ct/ULOG"
 20
 21 *GROUPS
 22 DEFAULT: TMSNAME=simprpccttms TMSCOUNT=2
 23
 24 GROUP1 LMID=sybsite GRPNO=1
 25 OPENINFO="SYBASE_XA_SERVER: -Uuserid1 -Ppassword1
 -Nconnection1"
 26
 27 *SERVERS
 28 simpsrv SRVGRP=GROUP1 SRVID=1
 29
 30 *SERVICES

Using the DTM XA Interface with TUXEDO

44

2 Replace entries in the file with entries appropriate for your environment as
shown in this table:

Note See the TUXEDO Installation Guide for a detailed discussion of the
UBBCONFIG file.

Creating the TUXEDO Configuration File
Set the $TUXCONFIG environment variable to a value that matches the entry
in ubbsimpct by issuing this command:

setenv TUXCONFIG $SYBASE/$SYBASE_OCS/sample/xa-dtm/tuxedo/
 simprpc.ct/tuxconfig

Create a TUXEDO configuration file from the UBBCONFIG file by executing
this command:

$TUXDIR/bin/tmloadcf -y ubbconfig_file_name

For this verification, using the simprpc.ct sample, replace
ubbconfig_file_name with ubbsimpct.

Line
Number Entry Replace With

13 yourmachine Replace with the name of the machine
that contains the XA Interface
installation. Remember that the
machine name is case-sensitive.

14 $TUXDIR Replace with the actual TUXEDO
root directory path.

15, 16,
18, 19

$SYBASE/$SYBASE_OCS Replace with the XA Interface
installation directory.

22 simprpccttms This parameter is specific to the
simprpc.ct example. In general, this
parameter should relate to the value
specified in the -o parameter of the
buildtms command described on ***
’Building the TMS’ on page 45 ***.

25 Open string parameters See “Open String Parameters for
DTM XA Interface” on page 23 for
more information.

CHAPTER 3 Configuring the XA Environment

45

Building the TMS
Build the transaction monitor server (TMS) by executing this command:

$TUXDIR/bin/buildtms -r SYBASE_XA_SERVER -o $TUXDIR/bin/output_filetms

where output_file is a name you choose for the transaction monitor server
program. It is helpful to append tms to the name as shown here, so it is easily
identified. Choose a unique name for the program so that it does not conflict
with TMS programs for other resource managers (TMS, TMS_D, and
TMS_SQL are reserved).

For the simprpc.ct example verification, the UBBCONFIG file uses
simprpccttms, which is Line 18 in the table on page 10.

The program is stored in $TUXDIR/bin so that the TUXEDO System/T boot
program can find it.

Build COBOL Runtime Environment (COBOL users only)

46

Build COBOL Runtime Environment (COBOL users
only)

In CICS transactions, COBOL transactions use the COBOL runtime, which
must be modified to communicate with the Sybase XA environment.

To configure CICS to support Sybase XA COBOL transactions:

1 Log in as root.

2 Set the COBDIR environment variable to the directory path for the
MicroFocus COBOL installation.

3 Set the PATH environment variable to include the MicroFocus COBOL
binary directory.

4 Change directory to:

$SYBASE/$SYBASE_OCS/sample/xa-dtm/cics

5 Run xa_make_cobol_runtime.

 Warning! This script assumes that the CICS COBOL runtime file is installed
in /usr/lpp/cics/v1.1/bin. If you have installed CICS somewhere else, you must
edit this script to reflect your installation.

This script builds a MicroFocus COBOL runtime environment with CICS and
Sybase XA support. It allows CICS transactions written in COBOL to
reference XA Interface and Open Client functions at run time. The script takes
several minutes to run. For more information, see your CICS documentation.

Note You must use MicroFocus COBOL 3.1 or higher.

47

C H A P T E R 4 Application Programming
Guidelines

This chapter includes these sections:

• “X/Open DTP Versus Traditional Sybase Transaction Processing” on
page 48

• “Transaction and Connection Management” on page 49

• “Deallocate Cursor Function with Client Library” on page 52

• “Dynamic SQL” on page 53

• “Getting a Client-Library Connection Handle” on page 54

• “Multiple-Thread Environment Issues” on page 58

• “Linking with CT Library” on page 60

• “Sample Embedded SQL COBOL Fragment” on page 61

• “Sample Embedded SQL C Fragment” on page 64

Embedded SQL and Client-Library applications must conform to certain
coding constraints in order to function within the Sybase XA
environment. This chapter summarizes these constraints and provides a
Client-Library code fragment and two Embedded SQL code fragments.

X/Open DTP Versus Traditional Sybase Transaction Processing

48

X/Open DTP Versus Traditional Sybase Transaction
Processing

The X/Open DTP model of transaction processing differs substantially from
the traditional Sybase model. The traditional Sybase TP environment is
connection oriented. Programs set up connections directly between the
application program and SQL Server using connection management SQL
statements. In the XA-Server environment, the XA-Server, using LRMs, sets
up connections for the application.

Table 4-1 summarizes the differences.

Table 4-1: Traditional TP and X/Open DTP model differences

Traditional TP Model X/OPEN DTP Model

There is one or more transaction
per client/server connection.

There is no notion of connections. Components
communicate through interfaces.

Transactions are usually local,
with each transaction confined
to a single Adaptive Server.

Transactions are global. They span resource
managers. The work done within a transaction is
accomplished using more than one resource
manager.

Each Adaptive Server is
responsible for the recovery of
the data it contains.

The transaction manager is responsible for
recovering the data stored in all of the resource
managers.

CHAPTER 4 Application Programming Guidelines

49

Transaction and Connection Management
Applications must pay special attention to commands related to:

• Transaction management

• Connection management

• Establishment of the current connection

Note The XA Interface uses an ANSI default isolation level of 3. To minimize
read-only locking, programs can set the transaction isolation level in the XA
configuration file, or they can use select xxx from table noholdlock in
individual SQL operations. See the Transact-SQL User’s Guide for additional
information on transaction isolation levels.

Transaction Management
The CICS, Encina, or TUXEDO TM is responsible for transaction
management. This includes creating a global transaction in which all of an
application’s work is either committed or rolled back. Consequently,
applications cannot issue SQL statements that manage transactions.

Specifically, applications cannot invoke the following Embedded SQL
commands:

• begin transaction

• commit

• rollback

Client-Library applications cannot execute (via ct_command, ct_dynamic, or
ct_cursor) any of these Transact-SQL commands:

• begin transaction

• commit transaction

• rollback transaction

• set (chained, noexec, isolation, parseonly, statistics io, statistics
time)

• save transaction

Transaction and Connection Management

50

Connection Management
Applications rely on the Sybase XA environment for management of
client/server connections. Connection management occurs transparently to the
application. Consequently, Embedded SQL applications cannot invoke the
following commands:

• connect

• disconnect

Client-Library applications cannot call these Client-Library commands:

• ct_close

• ct_con_alloc

• ct_con_drop

• ct_con_props

• ct_config with the parameters

•CS_ENDPOINT

•CS_EXPOSE_FMTS

•CS_HIDDENKEYS

•CS_MAX_CONNECT

•CS_NETIO

•CS_TRANSACTION_NAME

• ct_connect

• ct_exit

• ct_getloginfo

• ct_init

• ct_options with the parameters

•CS_OPT_CHAINXACTS

•CS_OPT_FORCEPLAN

•CS_OPT_FORMATONLY

•CS_OPT_NOEXEC

•CS_OPT_PARSEONLY

CHAPTER 4 Application Programming Guidelines

51

•CS_OPT_STATS_IO

• ct_remote_pwd

• ct_setloginfo

• CS_OPT_STATS_TIME

In addition, Client-Library applications cannot call these CS-Library
commands:

• cs_ctx_drop (with global context handle)

• cs_objects (CS_CLEAR, CS_SET)

The Current Connection
The notion of a default connection, as described in the Open Client Embedded
SQL documentation, does not exist in the Sybase XA environment.
Consequently, applications must always explicitly specify a current
connection.

There are two ways to specify the current connection in Embedded SQL. They
are:

• The set connection command

• The at connection name clause

A current connection does not span transactions. For example, an application
must reset the current connection after each CICS SYNCPOINTcommand or
Encina onCommit command. To avoid confusion about the scope of the
current connection, we recommend that you use the at connection_name clause
with all Embedded SQL statements.

Deallocate Cursor Function with Client Library

52

Deallocate Cursor Function with Client Library
Application programs use and reuse connections which have been allocated for
them via the XA Interface. Sybase’s implementation of cursors starting with
SQL Server version 10.1 requires cursor structures on both the client (TM/RM
program) side and Adaptive Server side.

When a client explicitly “deallocates a cursor,” or when the client connection
is closed, Adaptive Server deallocates the server cursor structures.

When the first iteration of a program opens or closes a cursor but the
connection stays allocated (as it does with XA-Library), the second iteration of
the same program fails, as it attempts to open the same cursor name. Adaptive
Server informs us that it already has a cursor by this name at the same nesting
level.

The application program must explicitly “close and deallocate the cursor”
before it commits or aborts its transaction. This must be done in the transaction
program that allocates the cursor. Embedded SQL records information about
cursors which allows the XA Interface to perform the de-allocation.

With Client-Library, care must be taken to handle error paths so that cursors are
deallocated before a TM abort code is called. That is, if the open cursor works,
deallocate it.

Use ct_cursor() with type CS_CURSOR_CLOSE and option CS_DEALLOC.

CHAPTER 4 Application Programming Guidelines

53

Dynamic SQL
The use of dynamic SQL statements has many characteristics in common with
cursors, with the additional complexity that temporary stored procedures are
sometimes placed into Adaptive Server. The use of dynamic SQL is not
recommended in transactional applications, but if they are used the following
guidelines must be adhered to:

• In Embedded SQL use “Method 3: Prepare and Fetch with a Cursor” (see
the ESQL document or a description of this method) if possible. When this
method is used, Embedded SQL places information in the system which
allows XA-Library to locate and deallocate all dynamic SQL and cursors.

• In all other cases, the dynamic SQL statements and all associated cursors
must be closed and de-allocated to avoid adverse effects on other
transactions. Any associated client library command structures should be
dropped to avoid memory leaks. See the Open Client and ESQL
documentation for information on how to drop these command structures.

Getting a Client-Library Connection Handle

54

Getting a Client-Library Connection Handle
Obtaining a connection handle is an issue specific to Client-Library
applications.

When the TM opens a connection to Adaptive Server, the XA Interface
allocates a CS_CONNECTION structure for its own use. Once control passes
to the application, that application must use the connection handle contained in
this structure.

To get the connection handle, specify CS_GET for the cs_object routine’s
action parameter with an object type of CS_CONNECTION. cs_object’s
objdata parameter returns a structure containing a connection field. This field
contains the handle to the CS_CONNECTION structure.

 Warning! The XA Interface also allocates a CS_COMMAND structure whose
handle is returned in the command field of the structure to which the objdata
parameter points. An application may not use this command handle, as the XA
Interface continues to use this handle, itself.

CHAPTER 4 Application Programming Guidelines

55

The following code fragment demonstrates how to retrieve the handle to the
CS_CONNECTION structure:

/*
 ** Arguments:
 **connectionnull-terminated name of the
 **connection (ESQL) or LRM
 **
 **connHloaded with the CS_CONNECTION
 **handle if the lookup is
 **successful
 **
 ** Returns:
 **CS_SUCCEEDconnection handle found
 **successfully
 **
 **CS_FAILunable to find connection
 **handle for given connection
 */

#include <stdio.h>
 #include <strings.h>
 #include <cspublic.h>

CS_RETCODEgetConn(connection, connH)
 CS_CHARconnection[128];
 CS_CONNECTION**connH;
 {
 CS_INTretcode;
 CS_CONTEXT*ctx;
 CS_OBJNAMEname;
 CS_OBJDATAdata;
 CS_THREADthread_functions;
 CS_INToutlen;
 #define THREADID_SIZE8
 CS_BYTEthread_id[THREADID_SIZE];

/* Check arguments */

if (strlen(connection) >= 128)
 {
 /* Connection name is too long */
 return(CS_FAIL);
 }

/* Get the global context handle */

retcode = cs_ctx_global(CS_VERSION_100, &ctx);
 if (retcode != CS_SUCCEED)

Getting a Client-Library Connection Handle

56

 {
 /* Major environment problems! */
 return(CS_FAIL)
 }

/*
 ** Initialize the CS_OBJNAME structure to look
 ** for the specified connection name.
 */

name.thinkexists = CS_FALSE;
 name.object_type = CS_CONNECTNAME;
 strcpy(name.last_name, connection);
 name.fnlen = CS_UNUSED;
 name.lnlen = CS_NULLTERM;
 name.scopelen = CS_UNUSED;

/*
 ** Set the current thread-id so we get the
 ** instance of this connection that this
 ** thread should be using.
 */

retcode = cs_config(ctx, CS_GET,
 CS_THREAD_RESOURCE, &thread_functions,
 CS_UNUSED, &outlen);
 if (retcode != CS_SUCCEED)
 {
 /*
 ** Even in an non-threaded environment,
 ** this should be successful.
 */

return(CS_FAIL);
 }
 name.thread = (CS_VOID *) thread_id;
 retcode = (*thread_functions.thread_id_fn)(
 name.thread, THREADID_SIZE,
 &name.threadlen);
 if (retcode != CS_SUCCEED)
 {
 return(CS_FAIL);
 }

/*
 ** Initialize the CS_OBJDATA structure to
 ** receive the connection handle for this
 ** connection name
 */

CHAPTER 4 Application Programming Guidelines

57

data.actuallyexists = CS_FALSE;
 data.connection = (CS_CONNECTION *) NULL;
 data.command = (CS_COMMAND *) NULL;
 data.buffer = (CS_VOID *) NULL;
 data.buflen = CS_UNUSED;

/* Retrieve the connection information */

retcode = cs_objects(ctx, CS_GET, &name,
 &data);
 if (retcode == CS_SUCCEED)
 {
 if (data.actuallyexists == CS_TRUE)
 {
 *connH = data.connection;
 return(CS_SUCCEED);
 }
 else
 {
 /* No connection by that name exists */

return(CS_FAIL);
 }
 }
 else

{
 /*
 ** The global CS_CONTEXT handle is probably
 ** not initialized with connection
 ** information yet
 */

return(CS_FAIL);
 }
 }

Multiple-Thread Environment Issues

58

Multiple-Thread Environment Issues
Threads are multiple, simultaneous paths of execution in a single operating
system process, and share access to the resources allocated to that process.

Some application programming interfaces (APIs) allow an application
developer to effectively use threads in the transaction environment. In turn,
Sybase’s XA Interface supports a maximum level of concurrency, enabling it
to take advantage of those environments.

However, this raises several issues for an application developer. For
background information and a complete discussion of the issues, see the OSF’s
DCE Application Developer’s Guide.

The Open Client Reference Manual contains a section on thread-safe
programming. XA Interface assigns connections to threads at the request of the
TM. These assignments ensure that only one thread at a time is working on the
connection and is the reason the thread ID is included in the cs_object request
described in “Getting a Client-Library Connection Handle” on page 54. As
long as connections assigned by XA Interface are used in the thread to which
they are assigned and the restrictions on their use are followed, there should be
no Open Client or ESQL threading-related problems.

Caveats of Thread Use
Client-Library uses a connection state machine to verify that applications call
Client-Library routines in a logical sequence. See Chapter 2, “Program
Structure” in the Open Client Client-Library/C Programmer’s Guide for an
explanation of the steps involved in structuring a Client-Library application.

The assumption underlying the use of threads is that when a thread
disassociates from a transaction branch, it leaves the state machine in an
inactive state. By default, all Embedded SQL statements leave the connection
quiescent. With Client-Library, that is true only in the following circumstances:

• When ct_results returns CS_END_RESULTS, or CS_SUCCEED with a
result type of CS_CURSOR_RESULT

• After an application calls ct_cancel with type as CS_CANCEL_ALL

CHAPTER 4 Application Programming Guidelines

59

• When an application returns CS_CANCELED. The APIs that return
CS_CANCELED include ct_send(), ct_results(), and ct_get_data().

 Warning! If connections are not left in an inactive state, the consequences may
include transaction rollbacks, extra overhead as the XA Interface cleans up
the connection (which may require full connection close and reopen), and
the possible failure of subsequent transactions. In such a situation, XA
Interface attempts to maintain application operation while it minimizes
failure.

Embedded SQL Thread-Safe Code
Thread-safe code is code that protects the use of shared resources with a mutex
(MUTual EXclusion semaphore). A mutex protects shared resources, such as
files and global variables, by preventing them from being accessed by more
than one thread at a time.

Use the -h (UNIX) or /threadsafe (VMS) precompiler option to generate
thread-safe code.

Linking with CT Library

60

Linking with CT Library
The XA Interface requires that the application be linked with the threaded
versions of the Open Client Libraries. See the Open Client/Server Supplement
for your platform to identify the libraries you must specify. If you don’t link the
proper thread-safe libraries, you may experience a variety of Open Client
failures.

CHAPTER 4 Application Programming Guidelines

61

Sample Embedded SQL COBOL Fragment
This code fragment:

• Sets the current connection, and

• Inserts data into an Adaptive Server database.

*REMARKS. TRANSACTION-ID IS ’POPS’.
* THIS TRANSACTION POPULATES A DATABASE’S
* DATA TABLE WITH STOCK DATA ENTRIES.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

COPY DFHBMSCA.
COPY DFHAID.
COPY AIXCSET.
EXEC SQL INCLUDE SQLCA END-EXEC.

77 RESPONSE PIC 9(8) COMP.
01 MSG-LIST.

02 MSG-1 PIC X(70) VALUE
’Transaction Failed: Unable To Prime Stock’

- ’Table.’.
02 MSG-2 PIC X(70) VALUE

’Stock Records Added Successfully.’.
01 TRANSFAIL PIC X(70).

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 STOCK-RECORD.

02 STOCK-NUM PIC X(5).
02 ITEM-DESC PIC X(30).
02 STOCK-QTY PIC X(7).
02 UNIT-PRICE PIC S9(4)V99 VALUE ZEROES.
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.
* CHECK BASIC REQUEST TYPE
*

IF EIBAID = DFHCLEAR
EXEC CICS SEND CONTROL FREEKB

END-EXEC
EXEC CICS RETURN

END-EXEC
END-IF.

Sample Embedded SQL COBOL Fragment

62

* MAIN PROCESSING
* SET UP STOCK RECORD DETAILS AND THEN WRITE OUT
* STOCK RECORD.
*

MOVE ’31421’TO STOCK-NUM.
MOVE ’Widget (No.7)’TO ITEM-DESC.
MOVE ’0050035’TO STOCK-QTY.
MOVE 25.55TO UNIT-PRICE.
PERFORM WRITE-STOCKREC.

MOVE ’43567’TO STOCK-NUM.
MOVE ’Splunkett ZR-1’ TO ITEM-DESC.
MOVE ’0005782’TO STOCK-QTY.
MOVE 143.79TO UNIT-PRICE.
PERFORM WRITE-STOCKREC.

EXEC CICS SYNCPOINT
RESP(RESPONSE)
END-EXEC.

IF RESPONSE NOT = DFHRESP(NORMAL)
MOVE MSG-1 TO TRANSFAIL
PERFORM FAIL-TRANS

END-IF.

MOVE MSG-2 TO MSGOUTO.
EXEC CICS SEND MAP(’MSGLINE’)

MAPSET(’AIXCSET’)
FREEKB

END-EXEC.
EXEC CICS RETURN

END-EXEC.
GOBACK.

* ATTEMPT TO WRITE OUT NEW STOCK RECORD.
*
WRITE-STOCKREC.
EXEC SQL SET CONNECTION connection_2

END-EXEC

IF SQLCODE NOT = 0
MOVE MSG-1 TO TRANSFAIL
PERFORM FAIL-TRANS

END-IF.

CHAPTER 4 Application Programming Guidelines

63

EXEC SQL INSERT INTO STOCK VALUES (:STOCK-RECORD)
END-EXEC

IF SQLCODE NOT = 0
MOVE MSG-1 TO TRANSFAIL
PERFORM FAIL-TRANS

END-IF.

* IF UNABLE TO APPLY CREATE, END TRANSACTION
* AND DISPLAY REASON FOR FAILURE.
*
FAIL-TRANS.

MOVE TRANSFAIL TO MSGOUTO
EXEC CICS SEND MAP(’MSGLINE’)

MAPSET(’AIXCSET’)
FREEKB
END-EXEC

EXEC CICS RETURN
END-EXEC.

Sample Embedded SQL C Fragment

64

Sample Embedded SQL C Fragment
This code fragment:

• Sets the current connection, and

• Accesses data stored on Adaptive Server.

EXEC SQL INCLUDE sqlca;

int rcode;

EXEC SQL BEGIN DECLARE SECTION;

char name[15];
char supplier[30];
char supplier_address[30];
int order_quantity;

EXEC SQL END DECLARE SECTION;

main()
{

char errmsg[400];
char qmsg[400];
short mlen;

EXEC SQL WHENEVER SQLERROR GOTO :errexit;
EXEC SQL WHENEVER SQLWARNING GOTO :errexit
EXEC SQL WHENEVER NOT FOUND GOTO :errexit

/* Get addressability for EIB... */

/*
** Write record to CICS temporary storage
** queue...
*/

/* Send the first map */

EXEC CICS SEND MAP("PANEL1") MAPSET("UXA1")
FREEKB ERASE RESP(rcode);

if (rcode != DFHRESP(NORMAL))
EXEC CICS ABEND ABCODE("X001");

/* Receive the response */

CHAPTER 4 Application Programming Guidelines

65

EXEC CICS RECEIVE MAP("PANEL1") MAPSET("UXA1")
RESP(rcode);

if (rcode != DFHRESP(NORMAL))
EXEC CICS ABEND ABCODE("X002");

/* Select a record from the table based on user
** input.
*/

sprintf(name, "%s", panel1.panel1i.newnamei);
EXEC SQL SET CONNECTION connection_1;
EXEC SQL SELECT name, supplier,

supplier_address,order_quantity
INTO
:name, :supplier, :supplier_address, :order_quantity
FROM cheese
WHERE name = :name;

/* Handle "no rows returned" from SELECT */

if (sqlca.sqlcode == 100)
{

sprintf(panel4.panel4o.messageo, "%s",
NOCHEESE);

EXEC CICS SEND MAP("PANEL4") MAPSET("UXA1")
FREEKB ERASE RESP(rcode);

if (rcode != DFHRESP(NORMAL))
EXEC CICS ABEND ABCODE("X009");

EXEC CICS SEND CONTROL FREEKB;
EXEC CICS RETURN;

}
/* Fill in and send the second map */

memset (&panel2.panel2o, ’0’,
sizeof(panel2.panel2o));

sprintf(panel2.panel2o.nameo, "%s", name);
sprintf(panel2.panel2o.supplo, "%s",supplier);
sprintf(panel2.panel2o.addresso, "%s",

supplier_address);
sprintf(panel2.panel2o.ordero, "%d",

order_quantity);

EXEC CICS SEND MAP("PANEL2") MAPSET("UXA1")

Sample Embedded SQL C Fragment

66

FREEKB ERASE RESP(rcode);
if (rcode != DFHRESP(NORMAL))

EXEC CICS ABEND ABCODE("X003");

/* Receive the response */

if (panel2.panel2i.questi == ’y’)

{

/* Send the third map... */

/* Receive the response... */

/* Update the database */

order_quantity = atoi(panel3.panel3i.newordi);

EXEC SQL UPDATE cheese
set order_quantity = :order_quantity
where name = :name;

/* Write a record to the temporary queue */

sprintf(qmsg, "%s", "The cheese table was
updated");

mlen = strlen(qmsg);

EXEC CICS WRITEQ TS QUEUE("TEMPXAQ1")
FROM(qmsg) LENGTH(mlen) RESP(rcode);

if (rcode != DFHRESP(NORMAL))
EXEC CICS ABEND ABCODE("X010");

}
else
{

/*
** The user does not wish to update so
** free the keyboard and return...
*/

}
/* Commit the update */

EXEC CICS SYNCPOINT RESP(rcode);
if (rcode != DFHRESP(NORMAL))

CHAPTER 4 Application Programming Guidelines

67

EXEC CICS ABEND ABCODE("X011");

/*
** Send the fourth map confirming
** successful update...
*/

EXEC CICS RETURN;

errexit:
fprintf(stderr,"error in cheeseland

%d\n",sqlca.sqlcode);

/* Handle general errors */

sprintf(errmsg,
"%.60s\n",sqlca.sqlerrm.sqlerrmc);

strncpy(panel4.panel4o.messageo, errmsg, 60);
sprintf(panel4.panel4o.codeo, "%d",

sqlca.sqlcode);

/*
** Send the fourth map with appropriate
** message...
*/

/* Rollback the transaction */

EXEC CICS SYNCPOINT ROLLBACK;

EXEC CICS SEND CONTROL FREEKB;
EXEC CICS RETURN;

 }

Sample Embedded SQL C Fragment

68

Index

69

Symbols
$SYBASE/sample/xa_library/CICS/switch directory

21, 32, 33, 34
/usr/lpp/cics/v1.1/bin and CICS COBOL run-time file

46

A
ACID test, definition of 6
AP. See Application program. 8
API 58
Application program

and symbolic names 16
as entity of X/OpenDTP model 8
in DTP environment 8
purpose 9

Application servers, linking 41
at connection name clause 51
Atomicity 6, 10

B
Branch, transaction 6, 11, 18
Building

TM server 45

C
Calls 18, 38

to LRMs 17
TX 10
XA 10

CICS
TM v

Client-Library
accessing data with v

coding constraints for vi, 1
configuring CICS for 1

Coding constraints and Client-Library 1
Command handles 54
commit 49
Commit phase 11
Commit phase of two-phase commit protocol 11
commit transaction 49
Commit, two-phase 11
Committed transaction, definition of 6
Conceptual view, X/Open DTP model 8
Configuration

files 14, 18, 39
of LRMs 29
XA configuration file 28

Configuration files
contents of 16
LRM name 18
UBBCONFIG 17
XA 19
XAD 19

Connection handle 54
sample program 55

Connections
and LRMs 16
and stored information 16
and X/Open 16
and X/Open DTP model 48
current 51
default 51
establishing 18, 38
establishing and managing 5
in traditional SYBASE TP 48

Consistency 6
CS_COMMAND structure 54
CS_CONNECTION structure 54
cs_object 54
CS-Library commands, invalid 51
ct_command 49
ct_cursor 49

Index

70

ct_dynamic 49
Current connection 51

D
dbcc commands

XA system 2
Decisions, heuristic 13
Default connection 51
Distributed Transaction Processing. See DTP. v
Documents, related vi
DTP

definition of 6
environment v
management v
X/Open Distributed Transaction Processing 1
XA model, graphic of 14

Durability 6
Dynamic registration 33

E
Editing

UBBCONFIG file 43
XA configuration file 28

Embedded SQL
accessing data with v
and coding constraints vi, 1
invalid commands 49, 50
running CICS software with 1

Environment
building runtime 46
XA 5, 14

Environment issues
multiple thread 58

Environment, XA
components of 14

F
Failure recovery 9
Files

and threads 59

configuration 14, 16, 18, 19, 39
interfaces 19
switch-load 32

contents of 32
UBBCONFIG, editing 43
XA configuration 19, 28

Flags
trace 23, 27

G
Global

identifiers 9
recovery 2
transaction 6, 10, 19

Global transaction 18
Global variables

and threads 59

H
Heuristic

decisions and conflict 13
transactions, managing 15

I
Identifier

global 9
transaction, definition of 7

Initialization 38
Initiation 10
Integrating TUXEDO 40
Interface

native 10, 15
native, illustration of 8
TX 8, 9
TX, illustration of 8
XA 10, 15
XA, illustration of 8

Interfaces file 19
Interfaces files 19
Invalid commands

Index

71

CS-Library 51
Transact-SQL 49

Isolation 6

L
library_names 41
Linking application servers 41
Local transaction, definition of 6
Logical Resource Manager (LRM)

configuration of 29
Logical Resource Manager. See LRM 16
LRM 16

and connections 16
and symbolic names 16

M
Makefile

sybasexa.mk 33, 34
Management of transactions 49
Migration, thread 33
mon_InitResourceManager 37
mon_InitResourceManager command 38
monadmin create rm command 17, 18, 37, 38
Multiple thread environment 57
Mutex and threads 59

N
Native interface

Client-Library calls as part of 15
definition of 10
illustration of 8

O
onCommit command 51
Open string 16, 17, 18, 37, 38

P
Password 17, 18, 37
Prepare phase of two-phase commit protocol 11
Processing, distributed transaction. See DTP. v
Protocol

transaction commitment 9
two-phase commit 11

R
Recovery 13, 48

definition of 7
failure 9
global 2, 12
via XA calls 10

Registration, dynamic 33
Requirements vi
Resource manager. See RM. 8
RM 8, 9
rm_name parameter 41
rm_structure_name parameter 41
rmname 38
Roll back transaction 6, 11
rollback 49
rollback transaction 49

S
Sample programs

retrieving connection handles 55
server_Init function 37
set connection command 51
SMIT utility 35
SQL Server, accessing data in 1
Standard, XA interface 1
Stanzas, Sybase

adding 35
purpose of 16

Stored information for connections 16
Strings

open 16, 17, 18, 37, 38
Structures 54
Switch structure 33
Switch-load files 32

Index

72

Sybase stanzas
adding 35

SYBASE TP, traditional
vs. X/Open DTP model 48

sybasexa.c file 32
sybasexa.mk makefile 33, 34
Symbolic names

and application programs 16
and Logical Resource Managers 16

SYNCPOINT command 51

T
Test, ACID, definition of 6
Thread migration 33
Threads 58
TM 8

accessing SQL Server data 1
CICS v
purpose 9

TM server, building 45
TMNOFLAGS 33
Trace flags 27
Transaction

branch 6, 11
committed 6, 11
definition of 6
global 6, 10, 18, 19, 48
heuristic, managing 15
identifier, definition of 6
limitation on 48
local 48
local, definition of 6
management v, 49
processing 6, 10, 11
roll back 6, 11

Transaction processing monitor. See TM. 8
Transact-SQL commands, invalid 49
TUXEDO

integrating 40
Two-phase commit 11
TX

calls 10
interface 9
interface, illustration of 8

U
UBBCONFIG file 17

editing 43
User name 17, 18, 37
Utility, SMIT 35

X
X/Open

and connections 16
Distributed Transaction Processing

DTP 1
X/Open DTP model

vs SYBASE TP 48
XA

calls 10
DTP model, graphic of 14
environment 14
interface 10, 15
interface standards 1
interface, illustration of 8

XA configuration file 19
editing 28

